skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paterson, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present analysis on two X-ray bright points observed over several hours during the recent solar minimum (2020 February 21 and 2020 September 12–13) with the Nuclear Spectroscopic Telescope Array (NuSTAR), a sensitive hard X-ray imaging spectrometer. This is so far the most detailed study of bright points in hard X-rays, emission which can be used to search for faint hot and/or non-thermal sources. We investigate the bright points’ time evolution with NuSTAR, and in extreme ultraviolet (EUV) and soft X-rays with Solar Dynamic Observatory/Atmospheric Imaging Assembly (SDO/AIA) and Hinode/X-Ray Telescope. The variability in the X-ray and EUV time profiles is generally not well matched, with NuSTAR detecting spikes that do not appear in EUV. We find that, for the 2020 February bright point, the increased X-ray emission during these spikes is due to material heated to ∼ 4.2–4.4 MK (found from fitting the X-ray spectrum). The 2020 September bright point also shows spikes in the NuSTAR data with no corresponding EUV signature seen by SDO/AIA, though in this case, it was due to an increase in emission measure of material at ∼ 2.6 MK and not a significant temperature change. So, in both cases, the discrepancy is likely due to the different temperature sensitivity of the instruments, with the X-ray variability difficult to detect in EUV due to cooler ambient bright point emission dominating. No non-thermal emission is detected, so we determine upper limits finding that only a steep non-thermal component between 3 and 4 keV could provide the required heating whilst being consistent with a null detection in NuSTAR. 
    more » « less
  2. Abstract We present the first survey of quiet Sun features observed in hard X-rays (HXRs), using the Nuclear Spectroscopic Telescope ARray (NuSTAR), a HXR focusing optics telescope. The recent solar minimum, combined with NuSTAR’s high sensitivity, has presented a unique opportunity to perform the first HXR imaging spectroscopy on a range of features in the quiet Sun. By studying the HXR emission of these features, we can detect or constrain the presence of high temperature (> 5 MK) or non-thermal sources, to help understand how they relate to larger, more energetic solar phenomena, and determine their contribution to heating the solar atmosphere. We report on several features observed in the 28 September 2018 NuSTAR full-disk quiet Sun mosaics, the first of the NuSTAR quiet Sun observing campaigns, which mostly include steady features of X-ray bright points and an emerging flux region, which later evolved into an active region, as well as a short-lived jet. We find that the features’ HXR spectra are well fitted with isothermal models with temperatures ranging between 2.0 – 3.2 MK. Combining the NuSTAR data with softer X-ray emission from Hinode/XRT and EUV from SDO/AIA, we recover the differential emission measures, confirming little significant emission above 4 MK. The NuSTAR HXR spectra allow us to constrain the possible non-thermal emission that would still be consistent with a null HXR detection. We found that for only one of the features (the jet) was there a potential non-thermal upper limit capable of powering the heating observed. However, even here, the non-thermal electron distribution had to be very steep (effectively mono-energetic) with a low energy cut-off between 3 – 4 keV. 
    more » « less